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Analytic relations are developed to describe the coupling between experimentally observed optically heterodyne-
detected (OHD) transient grating (TG) signals and the underlying molecular dynamics of heme proteins. The
heterodyne detection was implemented using a diffractive optical element to generate the phase-matched
beam pattern along with a reference beam for OHD. The phase stability between the reference and signal
fields using this approach is shown to be excellent over several hours of signal collection. Under small signal
conditions this leads to an enhancement in signal-to-noise of several orders of magnitude. The grating excitation
provides an inherent acoustic reference that can be used to determine the absolute signal phase. This enables
separation of the real and imaginary components to the nonlinear susceptibility as well as determination of
both the absorption anisotropy and its real counterpart, the phase anisotropy. The relationship between the
phase anisotropy and the observed OHD TG signals is expressed in terms of the complex molecular
polarizability specific to heme proteins but can be readily extended to all other systems. Access to the material
anisotropy provides a direct probe of mode selective coupling in proteins, i.e., the nonuniform displacements
determined by the underlying asymmetric protein structure.

I. Introduction

Protein dynamics are intimately connected to the structure/
function relationship of biological systems. The causal connec-
tion between dynamics and function highlight interesting
problems in scaling. For example, the breaking or making of a
chemical bond at an active site is most strongly influenced by
force fields very local to the reaction center. However, for
numerous biological processes, the ensuing protein structural
changes accompanying the reaction must spatially extend out
to the mesoscopic dimensions of the protein to execute a
biological function. The quandary is that proteins are highly
associated systems and have innumerable minima nested within
an extremely complex potential energy landscape.1 A statistical
sampling of all degrees of freedom available to such large
molecules would lead to time scales for reactive crossings many
orders of magnitude slower than observed.2,3 Somehow biologi-
cal systems have found a way to transduce forces that develop
on an atomic length scale to length scales an order of magnitude
larger or more. The reaction and overall sequence of events are
obviously highly directed. The question is what is the “director”
in this sampling process.3 The specific asymmetric structure of
the protein is expected to be the primary agent, but the
mechanics of the coupling of the reaction forces to the different
length scales of motions is not well understood.

One of the classic problems in this regard is the mechanism
of molecular cooperativity exhibited by hemoglobin.4 Hemo-
globin is composed of four nearly identical heme protein

subunits with approximately 1200 atoms each and diameters
of ∼30 Å. Each subunit is capable of binding one oxygen
molecule per heme Fe. This protein complex undergoes a factor
of 300 change in oxygen binding affinity that depends on the
number of oxygen molecules bound at the Fe sites. The Hill
coefficient of cooperativity is approximately 3.4 This value
indicates phenomenologically that the binding of oxygen at all
four sites affects the oxygen binding at neighboring sites. The
interaction between protein subunits produces more than a 20
dB gain in response to changes in the partial pressure of oxygen
about a critical value. This synergistic coupling of reaction
coordinates and effect on the rate of oxygen binding is essential
to transporting oxygen from the lungs to extremities in the body.
The simplest model to explain the interaction between the heme
protein subunits is the use of a two-state model, as first proposed
by Monod et al.5 In this model, it was proposed that there was
a transition from a low-efficiency to high-efficiency binding
state. From the pioneering work of Perutz,6 it was later
determined that the structure of fully oxygenated hemoglobin
and fully deoxyhemoglobin are different.4 The remarkable
finding from these crystallographic studies was that the two
structures varied in their quaternary structure by as much as
15° ball-in-socket type rotation and 6 Å translation about the
interfacial contact region. There was the apparent explanation
for the Monod Two-State Model. The switch between the high-
affinity (R) and low-affinity (T) forms was correlated to the
changes in quaternary structure. There are also distinctive
changes in structure at the tertiary level, but the quaternary
changes are the most significant and are thought to dominate
the modulation of the activation barrier to binding of oxygen.
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The phenomena of molecular cooperativity is derived from
structural changes that literally involve 104 degrees of freedom
or more and is powered by one or a few chemical bonds. The
hemoglobin example is representative of a large class of
allosteric enzymes that exhibit changes in activity with changes
in configuration.6 Similar long-range correlations with small
input energies exist for all protein systems that rely on some
level of locomotion to perform their function. These protein
systems must be poised to highly direct the reaction forces to
their respective functionally relevant motions. Again, using
hemoglobin as the model system, an “allosteric core” has been
identified within the asymmetric structure of the heme protein
subunits.7 The steepest potential energy gradient is found to be
along the EF helical section in intimate contact with the protein-
protein interface and the ligand binding site at the iron. Thus,
the reaction force is highly anisotropic and should lead to larger
displacements along the direction required for intersubunit
communication. Displacements along this tertiary coordinate
effectively transfer forces from the binding site to the protein
contact region and ultimately couples the reaction sites through
fluctuations along the quaternary coordinate. In other words,
there is a built-in gradient in the asymmetric protein structure
that directs the process. With respect to the length scale vs time
scale debate, the mechanism by which such highly associated
systems, with so many degrees of freedom, samples this
coordinate is the fundamental issue.3

To fully understand this problem, information on both the
structural changes and the degree of coupling of the reaction
coordinate to different modes/relaxation processes of the protein
system is needed. The ultimate experiment would be to perform
time-resolved diffraction experiments. Recently, there has been
remarkable progress toward this goal.8 Even in this event, it is
difficult to connect the structural changes to the energetics of
the relaxation process. The energetics are essential to distin-
guishing a dominant relaxation phase in connection with the
mode selective coupling inherent to a highly directed process.
Moreover, the structural relaxations thought to be most important
to function often involve highly correlated motions with very
small displacements (e.g.,<0.1 Å for the motions of the EF
helical sections of myoglobin).4,6,8 It is desirable to have an
experimental method that is sensitive enough to detect the
smallest motions, ultimately down to the level of the background
thermal fluctuations, and one that can be connected to the
energetics of the relaxation process.

In this paper, we expand on an earlier report on the use of
heterodyne-detected transient grating spectroscopy to follow
these motions with the prerequisite sensitivity.9 The observable
is the density change or protein strain (∆S) that accompanies
protein relaxation. This aspect to the observable is contained
within the real part of the nonlinear susceptibility. Assuming
linear response, the strain variable can be connected to the
change in the potential energy of the protein as it relaxes (i.e.,
the observable is the protein strain energy). The sensitivity of
this approach is now well within the range to follow the most
minute motions. Changes in effective volume of less than 0.01
Å in effective radius can now be detected (∆S e 10-6) with
heterodyne amplification of the signal. For comparison the
smallest root mean square (rms) thermal fluctuations of the
helical regions, as determined from Debye-Waller factors, are
on the order of 0.03 Å.10 The current sensitivity is well within
the thermal limit such that the even the smallest motions leading
to protein strain are detectable.

The new feature of this spectroscopy is the use of diffractive
optics to provide a phase-locked reference field for mixing with

the signal field.9,11,12This possibility was first suggested by the
work of Rogers and Nelson that employed transmission gratings
to provide the correct beam pattern.13 This seminal work focused
on the ease of alignment and direct detection of the signal. We
expanded on this concept and explored the use of surface relief
diffractive optics to obtain high transfer efficiency of the
incoming light to the desired beam pattern (g75% at the design
wavelength) and provide the most stable reference possible for
mixing with the signal field using a diffractive optic.11 The
diffraction process off the surface profile defines the phases of
the excitation, probe, and reference fields and is precisely
defined at the surface. As long as the extracted beams all pass
through the same optics, this single optic provides passive phase
locking of these different optical fields on par or superior to
active feedback methods. As will be shown below, this approach
can achieve signal enhancements of several orders of magnitude
in the small signal limit, as expected for true phase-locked
mixing of the reference and signal fields.

The advantages of heterodyne detection are linearization of
the signal, enhancement of the small signal detection limit by
orders of magnitude, and separation of the real and imaginary
contributions to the complex nonlinear susceptibility. The latter
attribute is the most important to the present study. The
conventional method of measuring the diffracted probe intensity
alone (direct detection) gives a signal proportional to the
modulus squared of the complex nonlinear susceptibility. The
signal scales quadratically and contains contributions from both
amplitude and phase grating contributions, i.e., excitation-
induced variations in absorption (imaginary) and the index of
refraction (real) at the grating wave vector, respectively. As
discussed, the mass displacements associated with protein
motions contribute to changes in the index of refraction or the
real part of the nonlinear susceptibility. For probe wavelengths
well off resonance, the protein contribution to the grating signal
can be significant or even dominate the signal. However, it is
desirable to cleanly separate the two contributions to avoid
complications from different sources for the diffracted signal.
Separation of the amplitude and phase grating contributions is
achieved by using an internal acoustic reference to set the
relative phase differences between the reference and signal
fields.9,12 The high phase stability of this approach greatly
facilitates this operation. This new ability makes it possible to
directly observe protein motion coupled to the reaction coor-
dinate with even higher sensitivity than previous studies. The
clean separation of the real and imaginary components also
makes it possible to define a phase anisotropy in analogy to
absorption anisotropy.9 The above issue of directionality in
biological molecules requires that the mass displacement in
response to reaction forces be anisotropic. The prospect of
determining the phase anisotropy provides a direct observation
of this mode selective coupling. Thus, it not only provides the
opportunity to directly observe the modes/relaxation processes
coupled to the reaction coordinate but also casts out those
motions that can be assigned as the functionally most important
motions.

In this first paper of a two-part series, we analyze the
relationship between the experimental OHD TG signals and the
underlying molecular geometry and dynamics, and we show
how polarization resolution of the TG signals enables measure-
ment of anisotropic strain in the protein. A description of
previously unreported aspects of the experimental heterodyne
setup using a diffractive optical element for passive phase
stabilization is also provided here, along with a comparison to
previous work using active stabilization. The experimental
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results obtained by applying these methods to heme proteins
will be discussed in detail in the second paper.14

II. Theory

A. Relation between the Molecular Index Ellipsoid and
the Grating Signals. The macroscopic sample is taken to be
an ensemble of independent (noninteracting) protein molecules
in dilute solution. The grating signals can be expressed as
changes in the linear susceptibility, as this formalism allows
the complex material response to be written using relatively
compact expressions. Since the protein contribution is viewed
as a small perturbation to the real, isotropic solvent susceptibil-
ity, there is a simple relation to the more commonly used index
of refraction and absorption ellipsoids:15

Heren0 is the isotropic contribution to the refractive index from
the solvent,ω is the optical frequency,c is the speed of light,
δij is the Kronecker delta function, andøij refers to the protein
contribution to the susceptibility only. Equations 1 and 2 are
written relative to the molecular coordinates of a single
molecule, taken to be the eigenbasis of the imaginary (Im) part
of the protein susceptibility. It is well-known that in their ground
state heme proteins are to a very good approximation “planar
absorbers” in the visible part of the spectrum.16 This means that
the molecule has appreciable polarizability only in the plane of
the heme ring and can only interact with the component of an
applied field that is within the heme plane. Written explicitly
in the molecular eigenbasis, the anisotropic susceptibility for a
planar absorber in the ground state is

where the superscript g refers to the ground state.
The Euler rotation matrixR(Ω), with Ω ≡ (æ,θ,ψ), defines

a mapping of the molecular eigenbasis into the laboratory
coordinate system as shown in Figure 1a,17 so that in the lab
frame the molecular susceptibility is

The laboratory coordinate system used in this analysis is shown
in Figure 1b. Theu1 direction is along the grating wavevector
formed by the intersection of the two input excitation fields
Eex1 andEex2, with wavevectorsk1 andk2:

The u2 axis is in the plane of the grating (the sample plane as
shown), and theu3 axis is along the optic axis of the experiment.
We define the polarization angles of all four fields involved in
the grating experiment with respect to theu1 axis as shown in
Figure 1. The approximation (valid in the limit of small crossing
angles between beams) is made that none of the fields have
appreciable vector components along the optic axisu3.

Assuming a two-level system, basic considerations of Max-
well’s equations18 lead to an expression for the probability

densitype(Ω,ω) for exciting a molecule of orientationΩ from
the ground state g to the excited state e through absorption of
the total applied excitation fieldEex1 + Eex2:

Hereωex is the optical frequency of the excitation pulses, and
a andb are defined in Figure 1b.Cex is a normalization constant
such that the probability of the molecule remaining in the ground
state ispg(a,b,u1,Ω,ωex) ) 1 - pe(a,b,u1,Ω,ωex). This expression
is only valid in the small-field limit, where there is negligible
depletion of the ground state. For simplicity we assume optically
thin samples, so that the excitation intensity does not vary as a
function of propagation depth within the sample (u3). The only
part of the photoselected distribution that can contribute to a
grating signal is the change in the distribution across a half
grating fringeΛ/2 ) π/|k1 - k2|, i.e., the difference in the
distribution between illuminated and dark fringes:

nij ) δijn0 +
Re(øij)

2n0
(1)

Rij ) -
ω Im(øij)

cn0
(2)

Im[øg(ω)] ) Im[øg(ω)](0 0 0
0 1 0
0 0 1) (3)

ø(Ω,ω) ) R-1(Ω)‚ø(ω)‚R(Ω) (4)

u1 )
k1 - k2

|k1 - k2|
(5)

Figure 1. Laboratory coordinate system for analysis of the transient
grating experiment. (a) The set of Euler anglesΩ ) (æ, θ, ψ) that
defines the relationship between the molecular axes (x, y, z) and the
laboratory coordinate system (u1, u2, u3). The horizontal oval represents
the heme plane, withx andy within the plane andz along the heme
normal. The tilted oval represents a plane that is square along the lab
coordinates, withu3 the optic axis along which the laser beams
propagate, andu1 andu2 the two transverse directions. (b) Polarization
angles (a, b, c, d) of the four optical fields (Eex1, Eex2, Epr, Esig). The
fields are assumed to have no component alongu3 (small crossing angle
limit).

pe(a,b,u1,Ω,ωex) ) CexωexIm{[Eex1(a,u1) +

Eex2(b,u1)]* ‚øg(Ω,ωex)‚[E
ex1(a,u1) + Eex2(b,u1)]} (6)

∆pe(a,b,Ω,ωex) ) pe(a,b,0,Ω,ωex) - pe(a,b,Λ/2,Ω,ωex)
(7)
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In the coordinate system of Figure 1, the excitation fields are

whereEex1 andEex2 are constant (or slowly varying) amplitudes.
Both fields are assumed to be linearly polarized. The origin of
u1 is defined so that the two input excitation fields are in phase
at u1 ) 0. Substituting eqs 3, 4, 6, 8, and 9 into eq 7, the
photoselected distribution that gives rise to a grating signal is

whereRij(Ω) is the ij th element of the Euler rotation matrix
R(Ω).17

Next we need to determine the contribution from a single
excited molecule to the change in the linear susceptibility
experienced by the probe beam. To determine the explicit form
of this tensor, we will consider separately the different physical
effects that can couple to the susceptibility. Since we are
considering changes in a linear optical property of the medium,
we can simply sum the contributions from each effect inde-
pendently to find the total susceptibility change at the probe
wavelength from a single excited molecule:

Here,∆øelect is the susceptibility change from electronic dipole
interactions at the probe wavelength, i.e., the difference in the
polarizabilities of the ground and excited states at the probe
wavelength:

At the 800-nm probe wavelengths used here, the absorption
ellipsoid of the heme can have nonzero components along any
molecular axis, so the ground- and excited-state susceptibilities
must be kept general with six independent elements.

∆øsol is the change in the susceptibility due to temperature
or density fluctuations in the bulk solvent. These changes are a
secondary effect in that we assume the solvent does not couple
directly to the excitation field but only indirectly via the
protein-field interaction. The bulk solvent properties may
change due to thermalization of excess photon energy beyond
that required to break the heme-ligand bond, or possibly due
to changes in the volume element occupied by the protein
molecule. These changes are optically isotropic,19 so that∆øsol

is simply proportional to the identity (unit) matrixI :

Note that eq 13 does not imply that the solvent response is
homogeneous. It is indeed true that there will be nonuniform
local variations in the solvent density that are driven by the
nonuniform local displacement of the protein. However, a
variation in local solvent density will still couple isotropically
to the macroscopic susceptibility since there is no preferred
orientation or packing of the solvent molecules with respect to
the protein. A local density change in the solvent means that
the average distance between solvent molecules has changed.
Unless this average distance between molecules is different
along different directions (i.e., solvent molecules are packed

tightly along one dimension but spaced far apart from one
another along another direction), then the solvent response will
be optically isotropic. Experimentally, the optical isotropy of
the solvent response is demonstrated by the lack of photoacoustic
oscillations in the direct-detectedø1212tensor element (excitation
with crossed polarizations).9

This should be contrasted with the optical response of the
protein∆øglob. Within the protein molecule, atoms are indeed
compressed (or rarefied) more along one direction than along
another, resulting in an observable anisotropic response. The
two physical changes in the protein upon photodissociation of
the heme-ligand bond are conformational relaxation and a shift
in temperature. If the change in the protein geometry gives rise
to a direct interaction with the probe beam, this interaction may
be anisotropic. Since the globin is far off-resonance for optical
frequencies in the visible-near-IR range, it is highly unlikely
that there will be any noticeable change in absorption in this
wavelength regime upon conformational relaxation. Thus, we
can safely assume Im(∆øglob) ) 0; i.e., the contribution of the
globin to the grating signals is purely real. The globin evolution
may indirectly result in an absorption change by perturbing the
electronic structure of the heme.20,21However, we shall consider
this effect to be included in the electronic contribution of eq 12
instead. Since the susceptibility change for the globin contribu-
tion is a priori unknown, it too must be kept general, with six
independent elements.

The contribution to the change in the linear bulk susceptibility
from a single molecule of orientationΩ can be seen by writing
eq 11 in the lab frame as per eq 4:

The macroscopic susceptibility change is the contribution from
each molecule∆ø(Ω) weighted by the photoselection probability
∆pex(a,b,Ω) and averaged over all possible orientations (as-
suming an initially isotropic orientational distribution). This is
explicitly a function of the excitation field orientations:

Inserting eqs 10 and 14 and performing the angular integrals
yields expressions for the elements of the linear bulk suscep-
tibility change in terms of distinct physical contributions to the
molecular polarizability. To within a global multiplicative
constant, the on-diagonal elements are

wherex stands for the molecular coordinate indices (1, 2, 3):
A1

i ) B2
i ) 4 - 2δi1, A2

i ) B1
i ) 3 + δi1, andA3

i ) B3
i ) 4 -

δi1. The off-diagonal elements are all zero except for

The observable in the grating experiment is the component
of the probe field that is diffracted from the grating described

Eex1(a,u1) ) Eex1 exp(iπu1/Λ)[cos(a)u1 + sin(a)u2] (8)

Eex2(b,u1) ) Eex2 exp(-iπu1/Λ)[cos(b)u1 + sin(b)u2] (9)

∆pe(a,b,Ω,ωex) ) 4Eex1Eex2*Cexωex Im[øg(ωex)]{[1 -

R11
2(Ω)] cos(a) cos(b) + [1 - R12

2(Ω)] sin(a) sin(b) -
R11(Ω) R12(Ω)[cos(a) sin(b) + cos(b) sin(a)]} (10)

∆ø ) ∆øelect+ ∆øsol + ∆øglob (11)

∆øelect) øe(ωpr) - øg(ωpr) (12)

∆øsol ) ∆øsolI (13)

∆øij(Ω) ) ∆øsolδij + ∑
kl

[økl
e (ωpr) - økl

g (ωpr) +

økl
glob]Rki(Ω)Rlj(Ω) (14)

∆øeff(a,b) ) ∫dΩ ∆pex(a,b,Ω)∆ø(Ω) (15)

∆øxx
eff(a,b) ) Eex1Eex2*ωex Im(øg,ex){10∆øsol[cos(a) cos(b) +

sin(a) sin(b)] + ∑
i

[øii
e(ωpr) - øii

g(ωpr) + øii
glob] ×

[cos(a) cos(b)Ax
i + sin(a) sin(b)Bx

i ]} (16)

∆ø12
eff(a,b) ) ∆ø21

eff(a,b) ) Eex1Eex2*ωex Im(øg,ex)/2 ×
∑

i

[øii
e(ωpr) - øii

g(ωpr) + øii
glob][cos(a) sin(b) +

sin(a) cos(b)](1 - 3δi1)} (17)
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by ∆øeff(a,b). This is obtained through the usual constitutive
relation for linear polarization:22

In the small-crossing-angle approximation the component of the
probe field along the optic axis (u3) is negligible, and the signal
field will not exhibit any component alongu3 either. We can
then restrict our attention to only fields polarized in the (u1,u2)
plane.

In the above derivation, the four-wave-mixing process for
the transient grating experiment was broken into two distinct
steps: a photoselection process by the two excitation fields that
creates a spatially varying change in the linear susceptibility of
the material, followed by a probe field interaction with this
modulated susceptibility that gives rise to a diffracted signal
field. This picture provides a useful intuitive basis for assigning
the symmetry characteristics of the various physical contribu-
tions to the change in susceptibility. However, this formalism
does not lead to a natural treatment of phase-matching consid-
erations between the four fields involved. Another disadvantage
is that the susceptibility modulation tensor∆øij

eff(a,b) is an
explicit functional of the two input excitation fields. Since the
ultimate goal of this work is to determine the characteristics of
the protein only, it is more appropriate to describe the material
response in terms of the third-order nonlinear susceptibility
tensor elementsøijkl

(3). The constitutive relation for the field
radiated by the third-order polarization is (ignoring constant
prefactors):23

When eqs 18 and 19 are compared, the relation between the
linear and nonlinear susceptibility tensors is

Since theøijkl
(3) must be independent of the polarization anglesa

andb, the various tensor elements can be identified on the basis
of their field-polarization-dependent coefficients. The resulting
nonzero elements are

One of the checks on whether the derivation of the nonlinear
susceptibilities is correct is to determine whether they satisfy
the spatial symmetry relations appropriate for an isotropic
medium (i.e., proteins in solution). From Hellwarth, the only
nonzero independent elements must satisfy24

Direct substitution of eqs 21-23 into eq 24 verifies that the
expressions forøijkl

(3) do indeed obey the proper symmetry
constraints. Note that of the three unequal and nonzero tensor
elements, only two are linearly independent. This means that
only two elements need be acquired experimentally to fully
characterize the nonlinear susceptibility (at least for the single
frequency and time-ordering geometry considered here).23 It is
experimentally simplest to measureø1111

(3) andø1122
(3) .

Insight into the anisotropic dynamics of the protein can be
obtained by grouping the individual microscopic contributions
to the grating signals into two categories, “in-plane” and “out-
of-plane” relative to the molecular axis:

Here∆nin and∆Rin correspond to the (averaged) change in the
index and absorption ellipsoids along a direction within the heme
plane, while∆nout and∆Rout are the components of the change
in the index/absorption ellipsoids along the heme normal. There
is a proportionality constant implicit in eqs 25 and 26 since the
grating signals are in arbitrary units. With these definitions, the
third-order susceptibility elements from eqs 21 and 22 can be
written (neglecting constant prefactors):

so the index changes relative to the heme plane are

with similar relations for the in-plane and out-of-plane changes
in absorption. These expressions will be used to relate the grating
signals observed in the laboratory to index and absorption
changes relative to the heme plane of the protein.

B. Expected Anisotropy from the Change in the Protein
Electronic State.The anisotropyr(t) is a normalized measure
of how much the transient properties of a material differ between
probe fields polarized parallel or perpendicular to the excitation
field. The absorption anisotropy is defined as25,26

where the subscripts|| and⊥ refer to the relative pump/probe
polarization. The factor of 2 in the denominator of eq 29 is
necessary for proper normalization because there are two
directions orthogonal to the excitation polarization and only one
parallel. Knowledge of the anisotropy can be used, for example,

ø1122
(3) ) ø2211

(3)

ø1212
(3) ) ø2121

(3)

ø1221
(3) ) ø2112

(3)

ø1111
(3) ) ø2222

(3) ) ø1122
(3) + ø1212

(3) + ø1221
(3) (24)

∆nin ≡ Re[∆ø22 + ∆ø33]/2

∆nout ≡ Re[∆ø11] (25)

∆Rin ≡ Im[∆ø22 + ∆ø33]/2

∆Rout ≡ Im[∆ø11] (26)

Re[ø1111
(3) ] ) 8∆nin + 2∆nout

Re[ø1122
(3) ] ) 6∆nin + 4∆nout (27)

10∆nin ) 2Re[ø1111
(3) ] - Re[ø1122

(3) ]

10∆nout ) 4Re[ø1122
(3) ] - 3Re[ø1111

(3) ] (28)

r(t) )
∆R|(t) - ∆R⊥(t)

∆R|(t) + 2∆R⊥(t)
(29)

Ei
sig(a,b,c) ) i∑

j

∆øij
eff(a,b)Ej

pr(c) (18)

El
sig(a,b,c) ) i∑

ijk

øijkl
(3) Ei

ex1(a)Ej
ex2*(b)Ek

pr(c) (19)

økl
eff(a,b) ) ∑

ij

øijkl
(3) Ei

ex1(a)Ej
ex2*(b) (20)

ø1111
(3) ) ø2222

(3) ) ωex Im(øg,ex)[10∆øsol + ∑
i

[øii
e(ωpr) -

øii
g(ωpr) + øii

glob](4 - 2δi1)] (21)

ø2211
(3) ) ø1122

(3) ) ωex Im(øg,ex)[10∆øsol + ∑
i

[øii
e(ωpr) -

øii
g(ωpr) + øii

glob](3 + δi1)] (22)

ø1212
(3) ) ø2121

(3) ) ø1221
(3) ) ø2112

(3) )
ωex

2
Im(øg,ex)∑

i

[øii
e(ωpr) -

øii
g(ωpr) + øii

glob](1 - 3δi1) (23)
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to determine quantities such as orientational diffusion times, or
for placing constraints on the possible orientations of a given
dipole transition. In the case of heme proteins, we are interested
in the anisotropy both as a probe of the excited electronic state
symmetry in the vicinity of the heme (since this can indirectly
be affected by the local protein structure) and as a measure of
the dynamics of the asymmetric protein motions.

As determined by Myers and Hochstrasser,27 the component
of the third-order susceptibility that arises from a purely
absorptive dipole interaction with anisotropyrIm as defined in
eq 29 should obey the following expressions:

whereC is a constant. Inverting this, we can solve forrIm in
terms oføijkl

(3):

We assume that any absorptive changes arising from structural
and thermal effects in the globin or in solution are negligible.
Plugging in eqs 21 and 22 for the tensor elements with Im-
(øglob) and Im(øsol) set to 0, eq 31 becomes

This is a general expression for the absorption anisotropy of a
ground-state planar absorber that has arbitrary excited-state
absorption symmetry.

To treat the complex grating signals, we need to extend the
standard definition ofr to include effects that are not simply
due to absorptive interactions with the probe field. We define
a real counterpart to the absorption anisotropyrIm, which we
will refer to as the “phase anisotropy”:9

Substituting eqs 21 and 22 into eq 33 provides an expression
for rRe in terms of individual microscopic susceptibilities:

This definition allows us to treat changes in the real index of
refraction in a manner analogous to that used in the analysis of
polarized transient absorption data. Just as the numerical value
of the absorption anisotropy is related to the shapes and
orientations of the ground- and excited-state absorption el-
lipsoids, the phase anisotropy contains information about the
index ellipsoids. This is of interest primarily because we expect
the contribution of protein strainøglob to the grating signals to

be purely real. Protein strain can indirectly contribute to the Im
part of the signals through perturbations of the environment in
the vicinity of the heme, whose electronic-state contributions
to the signals are both anisotropic and complex. The time
evolution of the electronic states can also be affected indirectly
by conformation changes and thermal relaxation of the pro-
tein.20,21 These effects can contribute to both the Im and Re
components of the signal and must be separated through control
studies on other systems.

Since the probe experiences a phase shift owing to the
different electronic structures of the ligated and deligated states,
rRe will in general have a nonzero contribution from the
electronic-state population. This can obscure the anisotropy
arising from the conformation change. The electronic-state
(dipole) contribution torRe can be isolated by ignoring the
structural and thermal contributions, Re(øglob) and Re(øsol), to
the change in susceptibility at the probe wavelength so that eq
34 has the same form as eq 32, with Imf Re. The magnitude
of the electronic-state contribution can be estimated by invoking
the Kramers-Kronig (KK) relationship between the Re and Im
components of the change in the linear susceptibility:15

whereP denotes the Cauchy principal value of the integral. In
practice the integration limits in eq 35 are taken to be over the
electronic resonances in the near-UV to near-IR wavelength
regime to minimize contributions from the bulk protein, which
does not absorb strongly in this region. The electronic-state
contribution to the phase anisotropy can then be written in terms
of the components of the absorption ellipsoid using eqs 2 and
35:

In general, the excited-state absorption ellipsoid will vary as
a function of the time delayt between the excitation and probe
pulses. Since the absorption spectrum of photodissociated MbCO
nearly converges to that of equilibrium deoxyMb within∼20
ps,20,28the polarization characteristics of the electronic state can
be assigned on the basis of the known symmetry of the various
dipole transitions at equilibrium. This assignment provides
constraints on the magnitude of the phase anisotropyrRe that
can arise from excited electronic states, valid for time delays
20 ps < t < 10 ns (when rotational diffusion and ligand
recombination effects become apparent).29 At shorter time delays
the polarization-resolved transient absorption spectra are not
available and no hard limits can be placed on the electronic
contribution torRe.

The equilibrium electronic states of crystalline MbCO and
deoxyMb have been investigated thoroughly by others using
polarized absorption spectroscopy.16,30-32 In crystalline form Mb
has a well-defined orientation, and measurements can be made
along different crystal axes to completely resolve the absorption
ellipsoid. The solution spectra are reproducible from the
measured crystalline spectra, suggesting that the heme environ-
ment is the same in both cases. MbCO’s spectrum, in particular,

Im(ø1111
(3) ) ) C(1 + 2r Im)/3
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is quite simple; all transitions from the N-band (330 nm) through
the near-IR (1200 nm) are overwhelmingly polarized in-plane.
This is also true for deoxyMb in the range 300-760 nm, but
for longer wavelengths the dipole transitions acquire a pre-
dominantly out-of-plane component. A summary of the polar-
izations of the various transitions of deoxyMb and deoxyhe-
moglobin (deoxyHb) in the visible-near-IR region is shown
in Table 1. Detailed information on the transitions underlying
the near-IR absorption spectrum of deoxyMb was not readily
available from the literature. The spectroscopic assignments for
deoxyHb were used instead.33 It has been shown by others that
the electronic configurations of the Fe(II) heme in deoxyHb
and deoxyMb are virtually identical.32

The measured absorption spectra in solutionRiso(ω) of MbCO
and deoxyMb were decomposed into contributions parallel and
perpendicular to the heme plane using these literature values
of the orientations of the various dipole transitions and the
relation34

between the isotropic and polarized absorption coefficients. Here
the indexz refers to the normal to the heme plane andx andy
refer to the in-plane directions (cf., Figure 1).35 The long-time
limiting values of the contributions from electronic transitions
to the absorption and phase anisotropies are calculated using
eqs 32 and 36, respectively, with Im[øii

e(ωpr)] and Im[øii
g(ωpr)]

in eq 32 corresponding toω-1Ri
deox(ω) and ω-1Ri

CO(ω), re-
spectively. Applying these relations to the orientationally
decomposed absorption spectra from eq 37 yields the long-time
limiting values for the electronic-state contributions torIm and
rRe, shown in Figure 2. There is some uncertainty in the literature
values of the relative magnitude of thez-polarized component
of the band II transition (850 nm), as noted in Table 1, so the
extrema of the possible values of the band II absorption ellipsoid
are included in the error bars forrRe

electandrIm
electshown in Figure

2. As expected,rIm
elect is very close to1/10 throughout the visible

spectrum and decreases monotonically to-1/5 in the near-IR
as the absorption acquires more of az-polarized component at
these wavelengths. The phase anisotropyrRe

elect is also very
close to1/10 for most of the visible range where it is dominated
by contributions from the strong Soret and Q-band transitions.
However,rRe

elect deviates significantly from1/10 for λ > 600 nm,
rising to nearly 0.20 at 880 nm before falling to about 0 forλ
> 1000 nm. The rather abrupt “spikes” inrRe

elect at several

points in the visible range are due to the very small value of
the denominator of eq 36 at wavelengths where the in-plane
and out-of-plane changes in the index of refraction are of
opposite sign. The most likely value for the dipole contribution
to the phase anisotropy at our probe wavelength of 800 nm is
rRe

elect ) 0.17 ( 0.01. The absorption anisotropy at 800 nm is
changing very rapidly with the relative magnitudes of thez-
andx,y-polarized transitions and is expected to be about-0.05
( 0.10. The large uncertainty in the absorption anisotropy arises
mostly from the possible range in the polarization of the band
II transition, but experimental error in the spectral measurement
contributes somewhat as well, especially forλ > 900 nm where
the change in absorption is extremely small.

The predictions of Figure 2 can be used to identify charac-
teristic features of the electronic-state transition for the reaction
MbCO f deoxyMb in different spectral domains. In addition,
the magnitudes of the observed anisotropies can be compared
with the expected electronic contributions from Figure 2 to
determine the presence of nondipole contributions to the phase
relaxation.

III. Experimental Section

A. Optical Apparatus. In the transient grating experiment,
an ultrafast probe laser pulse is Bragg-diffracted from a
photoinduced grating that results from the interference between
two excitation pulses crossed within the sample. The diffraction
efficiency is monitored as a function of time delayt between
the probe and excitation pulses. Since both phase gratings as
well as amplitude (absorptive) gratings give rise to diffraction,
the observed signals will contain more information than a simple
pump-probe experiment in which only absorptive changes can
be monitored. A phase grating results if the microscopic
contributions (∆øsol, ∆øglob, ∆øelect) to the third-order suscep-
tibility are purely real, and an amplitude grating results if they
are purely imaginary. In general, of course, they are complex
and the grating signals have contributions from both absorptive
and index changes.

These contributions cannot be distinguished by direct detec-
tion but can be easily separated using optical heterodyne

TABLE 1: Polarizations of the Various Transitions for
DeoxyHb and DeoxyMb throughout the near-IR Spectral
Rangea

R (cm-1 M-1) ω0 (cm-1) ∆ω (cm-1)

feature polarization Hb Mb Hb Mb Hb Mb

band I z 155 112 10900 10620 770 794
band II z (50-75%) 110 109 12250 11760 1200 1738

x, y (25-50%)
band III x, y 150 122 13200 13130 290 306
band IV x, y 90 12 15050 14840 310 407
Q-band x, y 3300 3391 19800 20020 3900 3883

a The fit parameters given for deoxyHb are from Eaton et al.33 The
parameters for deoxyMb were determined by fitting the measured
isotropic equilibrium spectrum of deoxyMb to the sum of five Gaussian
transitions following the approach of ref 33, each of the formR exp[-
(ω - ω0)2/∆ω2]. The heme electronic transitions are very similar
between Hb and Mb, suggesting that the associated polarization
assignments between the two species are the same.

Riso(ω) ) ∑
i

Ri/3 (37)

Figure 2. Contribution of the electronic-state change (CO-ligated heme
f deoxyheme species) to the absorption and phase anisotropies
calculated using the equilibrium absorption data in eqs 32 and 36. Since
the change in absorption forλ > 1000 nm is extremely small, the
calculated absorption anisotropy in this range is not shown, as it is
dominated by measurement errors. The phase anisotropy in this range,
however, is dominated by the contributions from the visible and near-
IR transitions and has reasonably low uncertainty. The uncertainties in
r Im andrRe arising from the range of likely polarizations of the band II
transition (Table 1) are also included in the error bars.
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detection (OHD). OHD involves spatially and temporally
overlapping a coherent reference field with the signal field of
interest on a detector.36 The OHD signal is the interference term
between the two fields, which can be isolated by making the
reference amplitude much larger than the signal field, modulat-
ing the excitation beams, and using lock-in detection to eliminate
the static contribution from the reference. For time delays much
greater than the pulse widths the OHD signal can be written
approximately as37-39

whereVOHD is the detector output with the reference present
and it is assumed that the reference field is a replica of the probe
field except for its relative amplitudeAref ) |Eref/Epr|. Iex and
Ipr are the intensities of the excitation and probe fields, and the
phase difference between the reference and signal fields is

Hereφø(t) is the delay-dependent phase of the effective third-
order nonlinear response functionøijkl

(3)(t) (related to the Fourier
transform of the third-order nonlinear susceptibility),23 and∆φ

is the phase difference between the input fields. The benefits
of OHD are amplification of the signal field, which can lead to
a dramatic improvement in the signal-to-noise (S/N);36 linear
dependence of the observable on the signal field amplitude,
eliminating cross-terms between different physical contributions,
and most importantly, phase-sensitive detection, enabling
measurement of the full amplitude and phase of the complex
signal field rather than simply its magnitude.

The primary difficulty in implementing OHD experimentally
is controlling the relative phase between the reference and signal,
φref - φsig(t). If this phase is allowed to vary randomly over
the time scale of data collection, the experimental signal will
be distorted. A conventional approach to this problem is to
actively lock the phase using the output of an interferometer as
the error signal for a feedback loop that controls the position
of one of the optics in the input beam paths.22,40,41 Results
published to date using this approach in grating experiments
have demonstrated only very limited capabilities for quadrature
detection.42,43 Some of the limitations in these earlier studies
arose from the large amount of phase noise (20°), which is more
apparent for in-quadrature detection than for in-phase detec-

tion.42 But, more fundamentally, this earlier work is hampered
by the requirement for a large signal field to generate easily
observable interference patterns to provide an error signal for
the feedback loop. Heterodyne detection of weak, in-quadrature
signal fields via this approach is nontrivial.

As discussed above, a new method has been developed
recently for passive phase stabilization of OHD transient grating
signals using a diffractive optical element (DOE) to generate
the appropriate input beam patterns.9,11,12,44-46 Compared with
active-feedback methods, this approach is easier to implement
and yields improved signal-to-noise, enabling full quadrature
detection capability. A schematic of our experimental apparatus
is shown in Figure 3. The laser source for this work was a 1-kHz
repetition rate, regeneratively amplified Ti:sapphire laser that
emitted<100 fs, 300µJ pulses centered at 800 nm. The 800
nm pulses were frequency-doubled with∼40% conversion
efficiency in a 300µm thick BBO crystal to generate 400 nm
excitation pulses. About 10% of the incident fundamental beam
was split off before the doubling crystal to serve as the probe
and reference pulse by reflection from the front surface of an
uncoated window. The time delay between the 800 nm and the
400 nm pulses was set using a hollow retroreflector mounted
on a computer-controlled translation stage driven by a stepper
motor (Daedal, Inc.). The delay line was double-passed to
increase the maximum delay range from 2.5 to 5 ns. Both the
400 nm and the 800 nm pulses were passed through separate
dispersive delay lines consisting of a double-passed prism pair.47

This imposed a negative frequency chirp on the pulses to
precompensate for dispersion in the optics downstream, so that
they were near-transform-limited at the sample position. The
polarizations of both pulses were set to about one part in 102-
103 at the sample position using Glan-Taylor calcite polarizers
placed before the DOE. The relatively low contrast ratio arose
from depolarization in the waveplates and mirrors between the
polarizers and the sample. The resulting error in the measured
anisotropy due to this depolarization is on the order of 1%.

The diffractive optic was a square-modulated, surface-relief
element optimized for>30% diffraction efficiency into each
of the (1 diffractive orders at 527 nm (National Optics
Institute). The efficiency into each of the(1 orders was>15%
throughout the 400-1000 nm range, so the same element could
be used for experiments with tunable probe and excitation
wavelengths.

An expanded view of the optical setup using the DOE is
shown in Figure 4. Two separate telescopes brought the two

Figure 3. Apparatus for the OHD transient grating experiments: (dashed lines) 800 nm beams; (solid lines) 400 nm beams;λ/2, half-wave plate;
DOE, diffractive optical element; BBO, 300µm thick â-barium borate crystal for second harmonic generation. The 400 and 800 nm beams are
brought to loose foci on the surface of the DOE with individual telescopes in each arm.

VOHD(t) ≈ 2ArefIexIpr|øijkl
(3)(t)|cos[φref - φsig(t)] (38)

φref - φsig(t) ) φref - π/2 - φø(t) - φpr - φex1 + φex2 )
∆φ - φø(t) (39)
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different wavelength beams to loose foci onto the same point
at the surface of the DOE (200µm diameter spot for the blue,
100 µm diameter for the IR). The crossing angle between the
two beams was small (∼2°) but finite to minimize nonlinear
coupling between the two pulses in the DOE substrate. The input
pulse energies were kept below 10µJ/beam at the DOE to avoid
continuum generation in the 3/16 in. thick DOE substrate. The
DOE split both the 400 and 800 nm pulses into two ((1 orders),
and all other orders were spatially filtered before the sample.
The diffraction plane was perpendicular to the crossing plane
of the two input beams, as shown in Figure 4. The resulting
four pulses were achromatically imaged onto the sample using
a 30 cm radius, Al-coated spherical mirror at a 1:1 conjugate
ratio, where there are no geometric aberrations from the large
angular spread between beams. The spherical mirror was tilted
slightly off-axis to separate the incoming from the outgoing
beams. A flat mirror was used to pick off the reflected beams
and send them toward the sample.

The two replicas of the 400 nm excitation pulse overlapped
at a 5.7° angle within the sample to create a holographic
interference pattern with a fringe spacing of 4.0µm. The protein
was photodissociated in the illuminated fringes and unchanged
in the dark fringes, so that the complex index of refraction varied
between them. One of the replicas of the 800 nm pulse (the
probe pulse) was Bragg-diffracted from this photoinduced
grating through an analyzer polarizer and into the detector (a
silicon photodiode). The other 800 nm pulse replica passed
through the sample and overlapped with the diffracted signal
field on the detector to provide a reference field for OHD.11,46

The phase-matching condition for Bragg diffraction of the probe
pulse from the grating formed by the excitation pulses is
automatically satisfied in this geometry.13,48

A 200 µm thick coverslip in the probe beam path could be
tilted slightly to provide fine control over the path length
difference and thus the relative phase between the probe and
reference pulses, so that both the real and imaginary components
of ø(3) could be measured. The reference intensity was attenuated
by a factor of∼103 by a broad-band 0° dielectric mirror to

optimize the signal-to-noise ratio36 and avoid saturating the
detector. Zero-order achromatic half-waveplates in each of the
beam paths allowed independent adjustment of all four field
polarizations. Additional glass (not shown in Figure 4) was
placed in the beam paths as necessary to overlap the time delays
between the two excitation pulses and between the probe and
reference pulses.

The phase noise has been measured to be about 2.5° rms using
excitation and probe beams of the same wavelength.11 For this
case, beams of the same diffractive order (+1 or -1) were
diffracted by the DOE into the same direction, and thus were
separated by only a few millimeters at any point. Fluctuations
in the phase difference∆φ arising from air currents in this case
were very small since adjacent beams experienced roughly the
same turbulence, giving rise to nearly equal phase distortions
that canceled one another in eq 39. In the setup used to measure
the protein dynamics, the probe and excitation were of different
wavelengths and thus all four of the beams diffracted from the
DOE were separated by several centimeters at the spherical
mirror. This resulted in increased sensitivity of∆φ to air
currents, requiring that an enclosure be placed around the
apparatus to reduce the phase noise to∼5° rms. These phase
fluctuations were responsible for the bulk of the experimental
noise in the protein studies. The phase stability attained here
using the DOE is an order of magnitude better than that reported
recently by a group using an active feedback scheme.42

The measured voltage signals from the lock-in amplifier are
not rigorously proportional to the TG signal field as is implied
by eq 38. There will always be a contribution from the modulus
square of the signal field in addition to the heterodyne term.
This contribution can be eliminated by subtracting two sets of
data acquired with aπ-phase shift between them, so that the
sign of the OHD term (eq 38) changes while the sign of the
term quadratic in the signal field does not.49 This procedure
also eliminates a pump-probe artifact that arises from passage
of the reference beam through the photoexcited sample volume.
However, the amplitude and phase modulations imposed on the
reference field upon passage through the excited volume will

Figure 4. Perspective view of the optical apparatus within the enclosure for the polarization-resolved heterodyne-detected transient grating
experiments: (dashed lines) 800 nm beams; (solid lines) 400 nm beams; HR, high-reflector (99.9%) broad band mirror. There is also additional
glass in the beam lines (not shown in this figure) to match the group delays within each pulse pair.
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still affect the OHD term. By examining the magnitude of the
pump-probe modulation of the reference intensity, the ampli-
tude modulation of the OHD signal was found to be<1%. The
phase modulation was estimated to be<1° from a measurement
of the absolute diffraction efficiency of the reference from the
photoinduced grating.50 Both amplitude and phase modulations
are lower than the random experimental noise and can be safely
ignored in our experiments. However, this is not universally
the case and should be checked for different samples and
excitation conditions.

B. Setting the Field Phases.To measure unambiguously the
real and imaginary components of the nonlinear susceptibility,
the phase difference∆φ between the input fields must be
set independently. Since the only experimental observable is
[φø(t) - ∆φ], which includes the phase shift from the nonlinear
susceptibility, it is a nontrivial problem to unambiguously set
the field phases at the sample position. This is an issue for any
OHD experimentswhether actively or passively phase-stabilizeds
in which none of the input pulses are copropagating, so that
their path lengths to the sample and thus their relative phases
are not precisely known. However, if at some delay the phase
of øijkl

(3)(t) can be inferred on the basis of previous knowledge of
the material, this can be used to set the field phase difference
∆φ and thus enable measurement oføijkl

(3)(t) at all delays.
For example, a particularly simple case is impulsive stimu-

lated Raman scattering51 of 800 nm pulses from liquid carbon
disulfide (CS2). Since CS2 is almost completely transparent to
800 nm light, the photoinduced change in absorption arising
from nonresonant excitation of low-frequency (<500 cm-1)
Raman-active modes can be assumed to be negligible for time
delays much greater than the laser pulse width. The imaginary
component is orders of magnitude smaller than the real
component at these time delays and is outside our detection
limit, i.e., to an excellent approximationφø(t . 0) ) 0.
Adjusting the coverslip in the probe beam so thatVOHD(t . 0)
) 0 then results in the phase observable [φø(t . 0) - ∆φ] )
π/2, so thatVOHD(t) ∝ Imøijkl

(3)(t) at all delays. Thus, the two
OHD signals shown in Figure 5 correspond to the Re and Im
parts of ø1111

(3) (t). In the inset of Figure 5, these signals are
squared and added together for comparison with the direct-

detected signal under the same conditions to demonstrate the
improvement in S/N under OHD.

For the protein studies, the response was complex and there
was no clear delay at which either the Re or Im part oføijkl

(3)(t)
could be assumed to be nonzero. Instead, the Re and Im signal
components were identified on the basis of the presence or
absence, respectively, of photoacoustic oscillations on nano-
second time scales.9 These sinusoidal oscillations in the signal
arise from a standing acoustic wave that is driven generally by
thermal expansion of the solvent,52 although global structure
changes in the protein may contribute as well.53 Since these
waves are simply density fluctuations, to a good approximation
they change only the real part of the refractive index.54,55With
this in mind,∆φ was set to(π/2 by tilting the coverslip in the
probe beam to eliminate the acoustics, so that the observed
signals were proportional to the Im component of the protein
response. The Re component was then measured separately by
imposing aπ/2-phase shift on the probe so that∆φ was either
0 or π.

This π/2-phase shift was set using a coverslip mounted on a
rotation stage at a∼5° angle with respect to the axis of rotation.
The axis of rotation was at an angle of a few degrees to the
incident beam, so that very small changes in the angle of
incidence could be dialled in by rotating the stage a set amount.
The phase shifts arising from precession of the surface normal
upon rotation about a given angle were calibrated on the basis
of the OHD TG signals from a solution of Malachite Green
dye, whose response after∼10 ps is almost entirely thermal
and thus real.52 This procedure provides about 5° accuracy in
setting the phase. This was further improved in the protein
experiments by averaging the results of four data sets acquired
with fresh alignments. As a consistency check, the Re and Im
components of the MbCO response were squared and added
together for comparison with the direct-detected signals mea-
sured with the reference beam blocked. The overlap of the two
responses showed the OHD signals were linear in the signal
field amplitude and in-quadrature with one another as expected.9

The disagreement between the two traces in the inset of Figure
5 at early time delays arises from the different functional forms
for the convolution with the driving field envelopes for the two
cases (which was neglected in eq 39).37-39

The greatest utility of the OHD technique is on time scales
both much longer and much shorter than those over which
photoacoustics can be observed. On these time scales there is
no clear indication of the phase of the signal field, and absorptive
changes cannot be clearly distinguished from index changes.
Use of the photoacoustics to provide a marker for setting the
reference phase enables separation of the Re and Im components
over all time scales, where new details of the protein response
can be observed [e.g., from inertial motions to ligand diffusion
out of the protein and bimolecular recombination (10-13-10-2

s)].12

IV. Conclusion

The analysis and description of the experimental techniques
presented here provide the groundwork for discussion and
interpretation of heterodyne-detected grating signals from heme
proteins. The analysis of the information contained within the
experimental signals closely relates the linear and nonlinear
optical properties of the material. In particular, the phase
anisotropy has been introduced as a quantitative metric for the
presence of non-electronic-state contributions to the grating
signals.

Figure 5. OHD grating signals from liquid CS2. The inset shows the
corresponding direct-detected signal measured under the identical
experimental conditions with the reference beam blocked (dotted curve)
and normalized to the same scale as the OHD signals. The solid curve
in the inset is the modulus-square of the OHD data constructed from
Re[ø3(t)]2 + Im[ø3(t)]2. This comparison illustrates the improvements
in S/N with heterodyne detection over direct detection.
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In the second paper of this series,14 the complex four-wave-
mixing response of carboxymyoglobin will be presented and
analyzed in detail. Photoinduced strain in the globin can be
isolated from other signal contributions by using the analytic
and experimental techniques described here. In particular,
decomposition of the grating signals along different molecular
coordinates indicates the development of anisotropic protein
strain on subpicosecond time scales. This illustrates the funda-
mental role of collective protein motions in transducing the
energy liberated by the heme-CO bond break into protein
structure changes.

These observations are made possible through the introduction
of diffractive optics as a simple means to execute heterodyne
detection for the separation of the real and imaginary compo-
nents to four-wave-mixing experiments. The experimental
heterodyne technique using a diffractive element to generate
the appropriate beam pattern is simpler and more robust than
alternative methods employing active phase-locking. The high
sensitivity achieved through the interferometric nature of this
experiment may provide a general procedure using off-resonance
probes for following the bath dynamics that are essential to a
detailed understanding of reactions in the condensed phase.
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